MOCHOVCE Nuclear Power Plant

More than

5,500

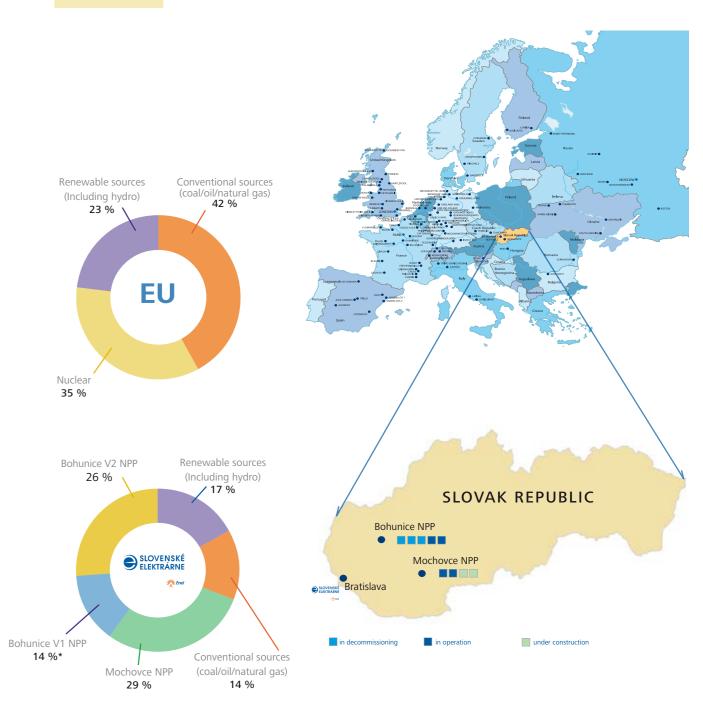
people employed in nuclear power in Slovakia

New clear power

Chronology of Mochovce

Start of construction works Halt of construction works Start of the completion works Start of operation (operation licence) 1998 * planned

More than 50 years of experience in nuclear



Nuclear in energy mix

* Bohunice V1 shutdown permanently in 2008

-

The role of nuclear power plants (NPP) in the world energy mix is continuously increasing with the reduction of fossil fuel reserves.

Nuclear power plants emit no greenhouse gas to the atmosphere, in this way NPPs annually contribute to CO_2 emission reduction by 800 million tonnes in Slovakia. Without nuclear–generated electricity, the emissions would be higher by two-thirds in the EU.

Nuclear fuel cycle

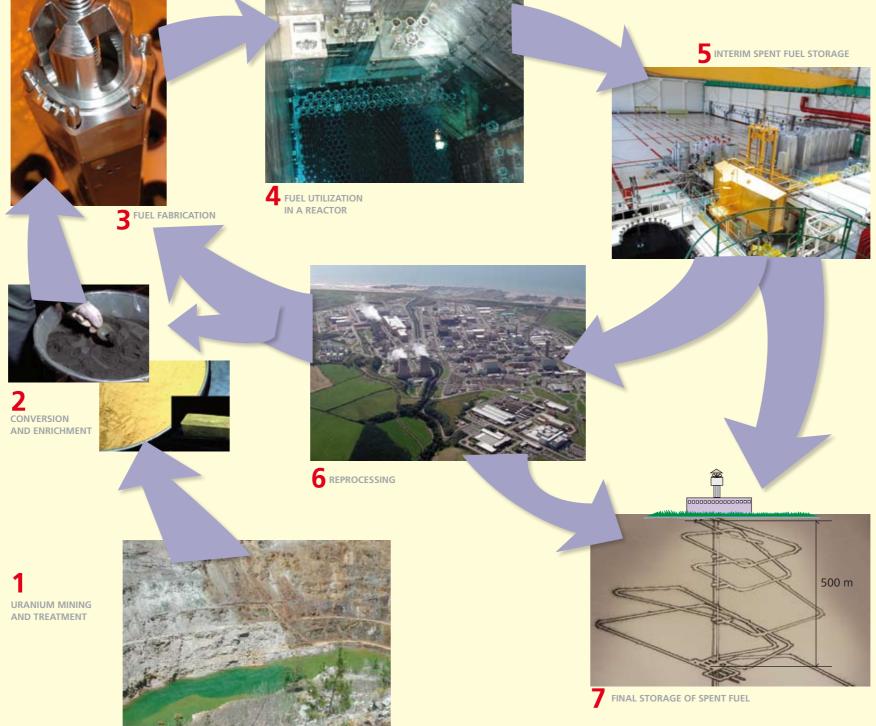
4 FUEL UTILIZATION IN A REACTOR

The energy released by fission of uranium in the reactor is removed by coolant - water - and then converted into electricity in a turbine generator.

5 INTERIM SPENT FUEL STORAGE

Spent fuel is moved to a spent fuel pool after 4 to 5 years of operation in the reactor. Fuel is handled in water, which provides sufficient protection against leak of radioactive isotopes to the environment. The fuel is being cooled down there. After 5 years, the spent fuel can be transported to the interim spent fuel storage.

3 FUEL FABRICATION


The pressurized water reactors use the fuel in form of the ceramic fuel pellets which are hermetically encased in metal tubes to form fuel rods. The fuel rods are arranged into fuel assemblies. The operation of one Mochovce reactor requires approximately 8.5 tonnes of uranium fuel a year.

2 CONVERSION AND ENRICHMENT

The process of refining and conversion is necessary for the conversion of the uranium compounds, present in the yellow cake, in a gaseous form suitable for uranium 235 enrichment (uranium hexafluoride - UF6). Uranium consists of a mixture of two isotopes – natural uranium U-238 and fissile uranium U-235. There is only a very little concentration of U–235 in natural uranium (0.7%) therefore it is necessary to enrich its concentration in the fuel to more than 4%.

1 URANIUM MINING AND TREATMENT

Uranium is extracted in underground or open pit mines. The original ore may contain from 0.1% to 3% of uranium. The greatest amounts of uranium ore is extracted in Canada, Australia and Kazakhstan. By leaching (a chemical treatment), the so-called "vellow cake" is obtained, which contains more than 80% of uranium.

46 mil. kWh of electricity is produced out of 1 t of natural uranium. This equals to 20,000 t of black coal or 8.5 mil. m³ of natural gas.

6 REPROCESSING

The spent fuel contains about 95% of U-238, but also about 5% of fissile products, which have originated in the reactor. In reprocessing plants, the spent fuel is separated into reusable uranium and waste.

7 FINAL STORAGE OF SPENT FUEL

Studies that define the optimal approach to the final spent fuel storage are being carried out and other possibilities of using spent fuel with the help of new technologies in nuclear industry are being considered. There is currently no country with a final deep repository of spent fuel.

Electricity generation

The principle of electricity generation in a nuclear power plant is quite similar to a conventional fossil fuel plant – the main difference is the source of heat which is then converted into electricity. In conventional thermal power plants the source of heat is fossil fuel (coal, gas, etc.), while in nuclear power plants the source of heat is nuclear fuel.

Fuel assemblies are placed in the **reactor pressure vessel**, where chemically treated water ("primary water") runs through channels in fuel assemblies and removes heat generated in the fission reactions. The heated water exits the reactor at a temperature of about 300°C and is conveyed to special heat exchangers – the **steam generators**. Here primary water transfers the heat removed from the core to the secondary circuit water. Both circuits are hermetically separated. While cooled-down primary water gets back to the reactor core, secondary circuit water evaporates in the steam generators. The high-pressure steam produced in this way is led to turbines,

Image: sector core
Sector sector

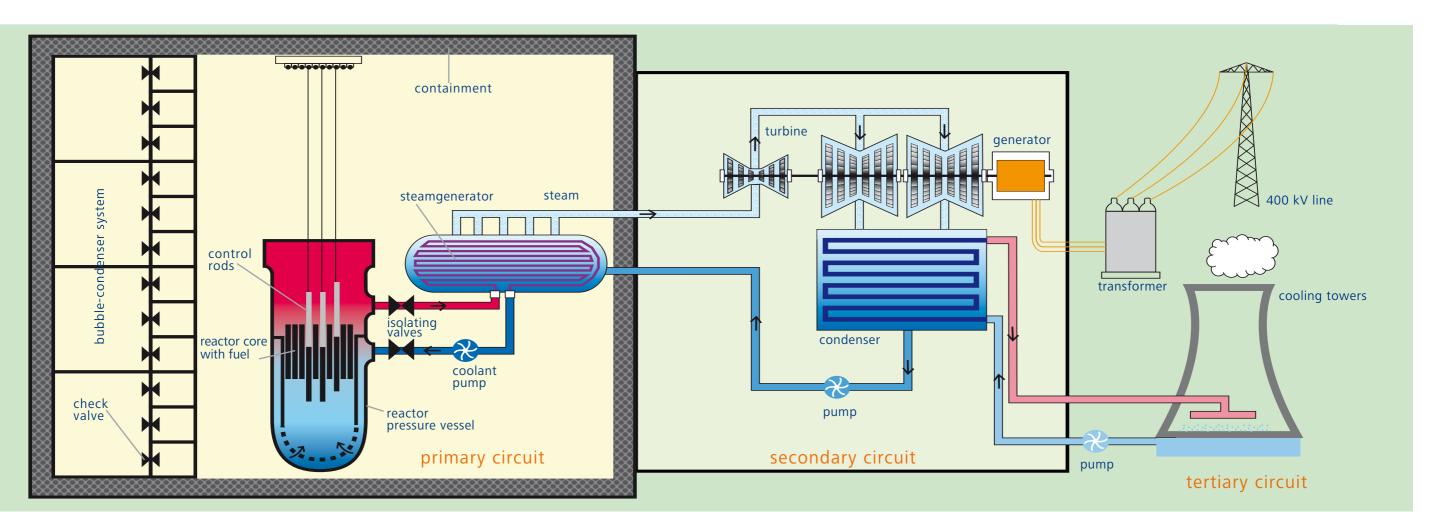

Image: sector sector sector
Image: sector sector

Image: sector
<td

fuel assembly

where it expands, causing the rotation of the turbine shaft connected to the **generator**, thus producing electricity. After expanding in the turbine, the steam condenses in the **condenser** and returns back to the steam generator. Steam collected in the condenser is condensed and cooled by the third cooling circuit - in **cooling towers**. Evaporation is compensated with water taken from the nearby Hron river. In this way, there is no possibility of direct contact between the primary water cooling the reactor core and water returned to the environment in the form of small droplets and steam from the cooling towers.

Nominal output power of the Mochovce NPP Units 1&2 was increased by 7% in 2008. This brings the electric output of each unit from 440 MW to 470 MW – an increase that can cover approximately 10 % of the 4.9 TWh household consumption in Slovakia.

Each unit supplies 11% of electricity consumed in Slovakia

Mochovce 1&2 safety features

Mochovce 3&4 evolutionary design

•	Construction of Units 1&2 included an extensive programme of design safety
	improvements. In addition to Slovak, Czech and Russian industry, the plant
	completion involved leading West-European companies, such as Framatome,
	Siemens, and EdF.
	Numerous international safety evaluations (IAEA, WANO, WENRA, RISKAUDIT) have concluded that the safety level of the reactors operated in Slovakia is

The technology of Mochovce 1&2 is based on a **robust design**, relatively low unit power and power density, and high volumes of water in the cooling circuits, which ensures wide and stable operational range for the plant. This implies high performances of the plant in accident prevention and, consequently, an inherently high level of nuclear safety.

comparable to that of nuclear power plants operated in Western Europe.

- **Triple redundancy** design is adopted for safety systems, which means that each plant safety system is actually replicated into three redundant, independent and fully-separated sub-systems, each of which is fully capable of performing the required safety functions.
 - A full-scope simulator, able to reproduce the plant performance and behavior in real time, is installed on site to ensure an effective training of NPP operators.

- inclusion of systems for severe accidents management;
- adoption of the latest digital technology for Instrumentation and Control; improvement of units' seismic resistance;
- enhancement of fire protection system;
- inclusion in the design of operational experience from similar plants.

Design modifications and safety improvements were approved by the Nuclear Regulatory Authority of the Slovak Republic. The upgraded plant design meets or exceeds current international safety requirements and is comparable with nuclear power reactors currently under construction in the EU.

An independent international **Safety Board** of six leading international nuclear safety experts has reviewed the design in order to ensure that international requirements and best-practices were incorporated; this Board review was additional and preceeded approval process performed by the National Nuclear Regulatory Authority.

Positive opinion about the Mochovce NPP Units 3&4 was expressed also by the European Commission within the framework of the Euratom Treaty.

- The design of Mochovce 3&4 is based on a proven and well-consolidated
- pressurized water reactor (PWR) technology and includes up-to-date
- technological developments and safety improvement measures, such as:

Containment

- In compliance with applicable international requirements, all the four units of the Mochovce NPP are equipped with a **containment** system fully capable to cope with accidents, thus minimising any off-site radiological consequences. Containment capability to withstand accidents is supported by extensive studies and tests mostly funded by EU and performed at the European level over the past fifteen years.
- This type of containment is of a pressure-supression type, relying on large volumes of water to condense steam released from the reactor coolant system in case of piping rupture, and to keep sub-atmospheric pressure inside.
- Containment design has taken into account all potential external hazards according to Slovak and IAEA requirements.
- The containment has a very small exposed surface, because of the favourable site orography and of several surrounding civil structures, and is made up of **1.5 m-thick reinforced-concrete** walls. This ensures the highest level of protection against external hazards, including an aircraft crash. It has to be underlined that Slovakia is a part of NATO Integrated Air Defence System covering air threats.

Mochovce units are equipped with

containment

with

thick walls

Barriers

preventing leak of radiation into the environment:

1 fuel matrix

2 fuel cladding

3 reactor coolant system boundary

4 containment

Radiation protection

Radiation protection of the power plant staff and population is crucial for the safe operation of the Mochovce NPP. The use of **ALARA** principle ensures that the radiation exposure inside and outside the power plant is **As Low As Reasonably Achievable** and well below the limits set by legislation. Through adoption of an effective radiation protection and monitoring programme, the impact of NPP operation on the environment and human health is negligible with respect to other radiation sources present in every-day life (see figure on the opposite page).

- Nuclear plants produce small amount of radioactive waste. One Mochovce unit produces annually approximately **60 m³** of liquid and **15 tons** of solid low-level radioactive wastes (RAW), and about **10 tons** of spent fuel. The waste is treated safely and separated from environment. No leak of radioactivity has ever occurred during many years of operation.
 - Liquid radioactive wastes are treated in Mochovce, solid ones in the Bohunice RAW Treatment Centre, and then disposed of in the National Radioactive Waste Repository in Mochovce.

NPP contribution to overall human radiation exposure

0.001 %

overall human radiation exposure

clock face 3 hour flight

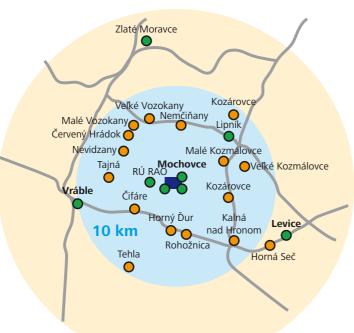
watching TV

radon in houses other sources 0.5 % nuclear power plant 0.001 %

cosmic radiation

liation sources in medicine

food intake


Earth's crust radiation

Environmental protection

Nuclear power plants are environment-friendly and significantly contribute to the obligation to reduce emissions of harmful greenhouse gas to the atmosphere. Regular environmental impact studies of the Mochovce NPP operation have proven that the power plant meets all international requirements and that the operation impact is minimal.

- Water required for cooling is taken from a water dam built on the nearby Hron river, which ensures sufficient supply of water even in extremely dry climate conditions. The impact of the discharged waters on the quality of the Hron river water, fauna and flora is negligible.
- The care and efforts of Mochovce NPP staff to reduce environmental impacts of the plant operations is demonstrated by the use of the environmental management system according to ISO 14 001.
 - Emissions to the atmosphere and effluents to the hydrosphere are regularly measured and assessed in the 20-km area around the plant. There are 25 monitoring stations of the tele-dosimetry system, which continuously monitor the dose rate of gamma radiation, activity of aerosols and radioactive iodine in the air, soil, water and food chain (feed, milk, agricultural products). The volume of radioactive substances contained in liquid and gaseous discharges is considerably lower than the limits set out by authorities.

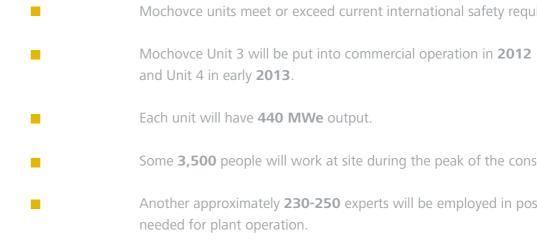
Map of the monitoring stations around Mochovce NPP

Nuclear plants emit Zero

EMS system certified

according to

Environmental Impact Assessment


Basic figures

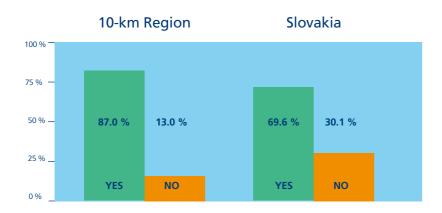
- The process of evaluating the environmental impact of the future operation (EIA) for Units 1&2 was undertaken in the past, and the same study is carried out for Mochovce Units 3&4.
- In 2007, the preliminary environmental impact study, produced by an internationally renowned company with over 50 years of experience, confirmed that the operation of all four units at the Mochovce NPP will have no significant adverse effects on the environment. Indeed, the project will result in a number of positive effects, both providing economic benefits to the immediate and surrounding communities and avoiding greenhouse gas emissions when compared to conventional plants.
 - Based on a requirements of the Slovak Ministry of Environment, the EIA process, including public participation according to Espoo and Aarhus Conventions, is carried out for Units 3&4, too, even though Mochovce 3&4 have a valid construction permit.

SE produces 86%

of electricity without

GHG emissions

	Units 1&2	Units 3&4
Reactor type	PWR – pressurised water reactor VVER 440/V-213	
Reactor thermal power	1,471 MWt	1,375 MWt
Electrical gross power	470 MWe*	440 MWe
Primary circuit	6 loops	
Working pressure/ temperature	12.26 MPa / 267 – 298°C	12.26 MPa / 267 – 295°C
Reactor pressure vessel (h/ø)	11,805 mm / 3,542 mm	
Secondary circuit		
Steam generator (6 per unit)	PGV - 213	
Volume of steam generated	479 tons per hour	444 tons per hour
Steam pressure and temperature at outlet	4.69 MPa / 259.9 °C	4.74 MPa / 260.6 °C
Turbine (2 per unit)	220 MWe	220 MWe
Generator rated power	259 MVA	300 MVA
Terminal voltage	15.75 kV	
Rated current	3 x 9,500 A	3 x 10,950 A
Tertiary circuit		
Max. temperature of cooling water	33°C	
Height of cooling towers (4 per 2 units)	125 m	


Mochovce units meet or exceed current international safety requirements.

Some **3,500** people will work at site during the peak of the construction.

Another approximately **230-250** experts will be employed in positions

Public Acceptance

One of the fundamental conditions of nuclear energy development is the public acceptance. Over two-thirds of the Slovak population (and over 87% of the population in 10-km area around the power plant) is **in favour of the completion** of Units 3&4. (Based on several public opinion polls performed in recent years in Slovakia, the last one being taken in 2007 by the independent agency GfK).

Opinion of Slovak population on Mochovce NPP Units 3&4 completion (GfK, 2007)

The main communication strategy of the Unit 3&4 completion project is **openness** and **transparency**. Different communication channels are used to improve the communication with the public:

- The Civic Information Committee of Mochovce NPP consists of 15 wellknown authorities from the region. They regularly meet the management of the Mochovce NPP to stay informed all the time.
- The Mochovce Regional Association consolidating municipalities in 20-km area of the Mochovce NPP, and the Association of Municipalities in 5-km area.
- Infocentre is available for visitors Monday to Friday from 7.30 am to 4.00 pm. Qualified lecturers guide visitors on a plant tour. Up-to-date information is issued in a monthly magazine **atom.sk** which is distributed throughout the region for free.

lssued by: **Slovenské elektrárne** a member of Enel Group

Infocentrum 935 39 Mochovce Slovakia

© 2009

Phone/fax: +421 36 639 11 02, e-mail: infocentrum@emo.seas.sk, www.seas.sk, www.enel.com